The VC-dimension of graphs with respect to k-connected subgraphs
نویسنده
چکیده
We study the VC-dimension of the set system on the vertex set of some graph which is induced by the family of its k-connected subgraphs. In particular, we give tight upper and lower bounds for the VC-dimension. Moreover, we show that computing the VC-dimension is NP-complete and that it remains NP-complete for split graphs and for some subclasses of planar bipartite graphs in the cases k = 1 and k = 2. On the positive side, we observe it can be decided in linear time for graphs of bounded clique-width.
منابع مشابه
On density of subgraphs of Cartesian products
In this paper, we extend two classical results about the density of subgraphs of hypercubes to subgraphs G of Cartesian products G1 × · · · × Gm of arbitrary connected graphs. Namely, we show that |E(G)| |V (G)| ≤ d2 max{dens(G1), . . . , dens(Gm)}e log |V (G)|, where dens(H) is the maximum ratio |E(H′)| |V (H′)| over all subgraphs H ′ of H. We introduce the notions of VC-dimension VC-dim(G) an...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 211 شماره
صفحات -
تاریخ انتشار 2013